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Mean flow and spiral defect chaos in Rayleigh-Beard convection
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We describe a numerical procedure to construct a modified velocity field that does not have any mean flow.
Using this procedure, we present two results. First, we show that, in the absence of the mean flow, spiral defect
chaos collapses to a stationary pattern comprising textures of stripes with angular bends. The quenched patterns
are characterized by mean wave numbers that approach those uniquely selected by focus-type singularities,
which, in the absence of the mean flow, lie at the zigzag instability boundary. The quenched patterns also have
larger correlation lengths and are comprised of rolls with less curvature. Secondly, we describe how the mean
flow can contribute to the commonly observed phenomenon of rolls terminating perpendicularly into lateral
walls. We show that, in the absence of the mean flow, rolls begin to terminate into lateral walls at an oblique
angle. This obliqueness increases with the Rayleigh number.
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I. INTRODUCTION The following facts are known about spiral defect chaos:
The parameter values for which it appept8—14; the dis-
Rayleigh-Baard convection in a horizontal layer of fluid tributions of local roll properties such as the wave number
heated from below provides a canonical example for spafl5]; statistics of spiral and defect populatiofis,16]; the
tially extended systems exhibiting pattern formatjdhand  mechanisms for the generation of chaos from spatial disorder
spatiotemporal chad®2—4]. (The latter term refers to states [17]; the wave number selection mechanism for spirals
that are disordered in space and that show chaotic dynami¢$8,19; and the conditions under which spiral defect chaos
in time)) In this paper, we present results from direct numeri-transitions to other states. Of particular interest to this paper
cal simulations of Rayleigh-Berd convection to investigate are experiment$20,21] that have observed that the spirals
the importance of nonlocal flow modes, generally referred taransform into targets when the Prandtl number is increased
as the mean floWy5-9], in the formation and dynamics of from o~1 to o~10 and when the Rayleigh numb&
patterns and spatiotemporal chaos. =3500. While this observation establishes that spiral defect
In a typical Rayleigh-Beard convection experiment, a chaos occurs only at low Prandtl numbers, it does not allow
fluid layer is confined between two horizontal plates, and isus to conclude which of the many dynamic phenomena that
thermally driven far from equilibrium by maintaining the occur at low Prandtl numbefd] is responsible for the for-
bottom plate at a temperature that is higher than that of thenation of spiral defect chaos.
top plate. As the temperature difference is increased, the fluid One particular phenomenon that becomes important at
undergoes an instability to a state in which there is motiorlow Prandtl numbers is the presence of a mean flow. Mean
driven by the buoyancy forces. When the temperature differflow is the name given to the velocity field with a nonzero
ence between the plates is above but near this convectiveean over the depth of the convective cell that is generated
threshold, a pattern comprised of patches of locally paralleby the variations of the structure of the convection rolls such
convection rolls forms with roll diameters that are close toas their curvature, amplitude, and wave number, and that in
the depth of the cell; see, for example, Figa)6 When the  turn couples through advection to further modify the roll
temperature difference is increased, the fluid undergoes othetructure. Its magnitude is approximately inversely propor-
instabilities that may result in the pattern developing ational to the Prandtl numbge?2].
simple or a chaotic time dependence. Finally, when the tem- It is believed that spiral defect chaos is an effect of the
perature difference is increased further, spatiotemporal chanean flow which in turn is important at low Prandtl numbers
otic states may appear. In particular, a state called spiral d§10,14]. This hypothesis has been investigated in numerical
fect chaos[10] is observed for the Rayleigh numb&  studies of model equations of convection. For example, by
=3000, the Prandtl number~1, and the aspect ratib coupling a mean-flow-like field to the Swift-Hohenberg
=16. This state is a disordered collection of spirals that roequation[23], chaotic behavior is observg@4]. Further-
tate in both directions and coexist with dynamical defectsmore, when the parameter in the model that gives the
such as grain boundaries and dislocatipsee, for example, strength of the mean flow is made large, spatiotemporal cha-
Fig. 2@]. otic states akin to spiral defect chaos are obsef2&d-28.
However, the above results are tenuous because of two rea-
sons. First, the Swift-Hohenberg equation describes the spa-
*Electronic address: ChiamKH@MailAPS.ORG tiotemporal behavior of a field in two dimensions, whereas
URL: http://www.cmp.caltech.edt/stchaos convection is a three-dimensional phenomenon. Second,
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sinking fluid, light regions to hot rising fluid. The spiral defect
chaos planform is characterized by a disordered collection of spirals
FIG. 1. Time series of the Nusselt numb¥(e,t) for patterns  rotating in both directions and coexisting with dynamical defects
comprising straight parallel rolls that have no mean flow at severasuch as grain boundaries and dislocations. The labels “1" to “4”
values ofe before(denoted by solid lingsand after(dotted liney  are discussed in Fig. 8o) When the mean flow is quenched, spiral
quenching of the mean flow, which occurred at titge=50. All defect chaos collapses to a stationary pattern of textures of stripes
data reported here are for the Prandtl numberl and a rectangu- With angular bends. The planform shown here is at ten time units
lar cell of aspect ratid",=T",=20. (In order to achieve straight after the quenching has been introduced to the state shova).in
parallel rolls, periodic lateral boundaries were imposed and a smalhll other parameters are unchanged.
sinusoidal perturbation in the temperature field was used as the

initial condition) defect chaos, we can infer directly the role of the mean flow

there are known limitations to the Swift-Hohenberg model-" the formation and dynam|c§ of spiral defect chaos.
Once we have the capability to remove the mean flow

ing. For example, it is known that the long-time dynamics of ; , .
the Swift-Hohenberg equation may not correspond to that o}rom the fluid dynamics, we can apply it to the study of other

the Boussinesq equations of convection. In particular, SwiftprOblemS' One such problem that we have investigated is the

Hohenberg models exhibit spiral defect chaos as a transieﬁ?lat'on bet_Wee”. the mean flow and lateral boundaries. Using
ur numerical simulations, we have shown how the mean

behavior, whereas in experiments, spiral defect chaos i .
known to persist for much longer timg&9]. In addition, it is ow can cqntrlbute to th? Cqmmonly obgerved phenomenon
' f convection rolls terminating perpendicularly into lateral

also known that the small-scale structure of the mean flow af . X ! . .
walls, an observation that is still without much theoretical

the cores of the spirals, which might be crucial for the per- derstandi
sistence of spiral defect chaos, is not perfectly captured jynaerstanding. . : . )
the Swift-Hohenberg equatidi29)]. The remaining part of this paper is organlz_ed as foIIo_ws.

our goal in this paper is to show by direct numericalln Sec. ll, we define the equations governing Rayleigh-

simulations of Rayleigh-Beard convection that spiral defect Benard convection, what a mean flow is, and how it can be

chaos is indeed a consequence of the presence of the meg}?asured and eliminated numerically. In Sec. Ill, we present

flow. In the absence of the mean flow. we find that Spiralresults on the relation between the mean flow and spiral de-

defect chaotic states cease to exist, and are replaced by staiggt chaos, stripe textures, and lateral boundaries. In Sec. IV,
€ present our conclusions.

whose statistical properties differ from those of spiral defect"
chaos. In general, studies of the mean flow are difficult to

t

perform in experiments, primarily because it is difficult to Il. DEEINITIONS

measure the mean flow in an experimental sd@@-32.

This is due to several reasons, namely, that the magnitude of A. Boussinesq equations

the mean flow is smalitypically of the order of 1% of the  The evolution of a low-velocity and hence approximately

magnitude of the velocity of the convecting rgjland that it incompressible convecting fluid is governed to a good ap-
exists only in distorted and not regular patterns. To the besiroximation by the three-dimensional Boussinesq equations
of our knowledge, there has only been one experiment thah]. They are the combination of the incompressible Navier-
has successfully imaged aspects of the mean flow, but only i8tokes and heat equations, with the further assumption that
a simple distorted pattefi3,34. It is not clear if such im-  gensity variations are proportional to temperature variations

aging techniques can be applied to more general and complimg that this density variation appears only in the buoyancy
cated patterns. Thus, direct numerical simulations are pakyrce, \Written in a dimensionless form, they are

ticularly valuable for the study of the mean flow.
We achieve this goal by numerically constructing a o Y +u-V)u(x,y,z,t)=—Vp+V2u+RTz (1)
gedankerfluid whose velocity field is modified to have zero
mean flow. By investigating the states that arise from the
dynamics of this fluid and by comparing them with spiral (G +u-V)T(X,y,z,t)=V?T, 2
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V.-u=0. (3 B. Direct numerical simulations

We used two different numerical schemes to solve the
The fieldu(x,y,z,t) is the velocity field at pointX,y,z) at  Boussinesq equations. The first is a serial second-order-
timet, while p andT are the pressure and temperature fieldsaccurate finite-difference scheme that is based on a cubic
respectively. The variablesandy denote the horizontal co- colocated mesh. It is highly efficient for simulating a rectan-
ordinates, while the variable denotes the vertical coordi- gular cell of moderate aspect ratio. The second is a parallel
nate, with the unit vectaz pointing in the direction opposite spectral element scheme that is second-order accurate in time
to the gravitational acceleration. The spatial units are meaand is able to treat more complex geometries with arbitrary
sured in units of the cell deptti, and time is measured in lateral boundaries. Both schemes were used to obtain the
units of the vertical diffusion timed?/«, where « is the  results presented in this paper and were found to give good
thermal diffusivity of the fluid. The paramet&is the Ray- agreement with each other. Details of both of these schemes
leigh number, defined to be the dimensionless temperatur@re available elsewherg85,3g. For applications of these
differenceAT across the top and bottom plates, schemes to related problems in Rayleigha8el convection,

see Refs[37-39.

3 agd®

VK

R

AT, (4) C. Mean flow

When the convection pattern is made up of rolls that are
where « is the thermal expansion coefficient,is the ther-  neither concentric nor straight and parallel, a mean flow,
mal diffusivity, and v is the viscous diffusivity(kinematic ~ slowly varying in the horizontal coordinates, will be set up.
viscosity of the fluid. In this paper, we will also frequently The importance of the mean flow is that it is a nonlocal flow

use the reduced Rayleigh number mode, and as such, affects the global behavior of the convec-
tion pattern even though its magnitude is small. A detailed
R—R, derivation of the mean flow can be found in Rg#2]. Heu-
=R (5  ristically, it can be understood as follows. When there are

inhomogeneities in the amplitud&(x,y) and wave vector

k(x,y) [or equivalently, the phasé(x,y) whereV , ¢=Kk]

of the convection rolls, a Reynolds stress will be generated

locally from the gradients ok andA. This results in a flow

slowly varying in the plane. In addition, these inhomogene-

ities will also induce a varying componept(x,y,t) in the

pressure field that is constant across the depth of the cell and

- (6) slowly varying in the plane. The gradie™M, ps will then

K drive a global flow that, together with the Reynolds-stress-

induced flow, distorts the convection rolls further. If we call

The material walls are no-slip so that the velocity fieldthe slowly varying flowup, then we can writ¢22]

satisfies

whereR.~ 1708 is the critical Rayleigh number at the onset
of convection in an infinite domaifil]. The parametes is
the Prandtl number, defined to be the ratio of the fluid’s
thermal to viscous diffusivities,

g=

1 (2=
J =V pst=— déu-Vu, , 10
u=0 on all material walls. 7) 70p= VP |, pu-vu (19

The temperature field is constant on the top and bottonwvhere the integral over the phase varialfleserves to aver-

plates: age out the fast modes of the integrand. The as yet unknown
field ps can be determined via the incompressibility condi-
1 1 tion, Eq.(3), which requires that
Tixy,z=%5t|=*5, 8
2 2
1/2
. . \ZK d ,Y,z,1)=0. 11

and we assume that the lateral walls are perfectly insulating, * f—l/Z 2Up(X.y,2,) (@)

so that

A Equation(10) can then be integrated twice with respectto
n-VT=0 on lateral walls, (90  with boundary condition Eq(7), to completely giveup .
Finally, the slow distortionsi, advect the phase contours of

wheren is the unit vector perpendicular to the lateral walls atth€ convection rolls, yielding an additional advection term in
a given point. The pressure fiefhas no associated bound- the phase equatidi22],
ary condition, since it does not satisfy a dynamical equation.

The influence of the lateral walls on the dynamics is de- hp—dp+U-V, . (12
termined by the dimensionless aspect rdtiodefined to be
the half-width-to-depth ratio of the cell if it is rectangular The velocity fieldU is called the mean flow. It is an average
and the radius-to-depth ratio if it is cylindrical. of the slow distortions over the depth of the cell,
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12 convective heat transfer to heat transfer that would occur by
ux,y,t)= J_l/zdzuD(x,y,z,t)g(z), (13 conduction alone if the fluid remained at rest. In Fig. 1, we
show that this is true. The Nusselt numbers befolenoted

with g(z) a weighting function that, in principle, can be cal- Py solid lines and after(dashed linesthe quenching proce-

culated from the nonlinear structure of the rdiis7]. dure, which occurred &t=t,=>50, are indeed the same.
We can approximate the mean flow from our numerical
simulations as the average over the depth of the cell of the . RESULTS

slow components of the horizontal velocity, A. Mean flow and spiral defect chaos

1 (2= 172 Using the numerical schemes described in Sec. Il B, we
Uixy.t)~ Zfo dé ﬁllzdzul(x,y,z,t). 149 evolved Eqgs(2), (3), and(18) from the initial conditions

In practice, we replace the integral over the phase varigble u(x,y,z,t=0)=p(x,y,z,t=0)=0, (19
with a Gaussian filter of characteristic wid(1) so that
variations over short length scales are smoothed out. an
For the approximation of Eq.14), and with the no-slip
boundaries, Eq(7), the mean flowJ(x,y,t) is solenoidal: T(xy,zt=0)=—z+7(xy,2), (20)
V,-U=0. (15) whereT=—zis the linear conduction profile angl is ran-

domly chosen from a uniform distribution in the range
We will also find it convenient to use the mean-flow stream[ — 107510 %]. We observed spiral defect chaos when the

function {(x,y,t) and the vertical component of the mean- parameters are chosen such that the reduced Rayleigh num-

flow vorticity, »,, defined by ber € lies in the rangd 0.6,3.0, the Prandtl numbes~1,
) . and the aspect ratio lies in the raridé,30. In Fig. 2a), we
—Vi{=w,=z-(V_ XU). (160 show an example: a planform of the midplane temperature

_ _ _ ) ) . field T(x,y,z=0) at timet=500 for parametere=1.0, o
The stream function, in particular, is useful to visualize be-:1, andT',=T,=20. In general, the planforms we ob-

cause it gives the streamlines and so the geometry of thgsred are qualitatively similar to those observed in experi-
mean flow. ments in both cylindrica[10] and rectangulaf40] geom-
etries.
D. Quenching mean flow We note that the range of aspect ratios that we have simu-
We now describe a procedure to construct a modified velated is smaller than that of past experiments which extends
locity field that does not have any mean flow. To do this, welUP t0T'=50[10,12,14. This limitation is caused by the need
want to add to the right-hand side of H40) the negative of O integrate up to at least the horizontal diffusion time scale,
. . R 2 . . . P .
the source of the slow distortions, i.e., the depth average df~I'*, which is an estimate of the minimum time for thermal
the Reynolds stress, so thai, becomes zero for all transients to diffuse over the entire cell and thus for the pat-

(x,y,z,t). In Appendix A, we show that this additional term tern to reach an asymptotic state. Because of this quadratic

takes the form dependence on the aspect ratio, the time needed to execute
the numerical schemes so that an asymptotic pattern is
12 reached becomes prohibitively long fdr beyond about
d)(x,y,t)z—pfillzdquui (17 20-30(based on current computational resources; for de-
tails, see Ref{35]).
with p~1.5 a constant. We can then adicto the fluid equa- In the rest of this section, we report on results simulated
tion, so that Eq(1) becomes in a rectangular cell of aspect ratlo,=I'y=20. We inte-
grated for 500 time units, and then, at timet,=500, in-
o Y o+ u-V)u(x,y,z,t)=—Vp+VaUu+RTz+ o 1. voked the forcing term given by E¢L7) that will quench the

(18 mean-flow dynamics. In Fig.(B), we plot the midplane tem-
perature field at timé=510 which is ten time units after the
If ® is introduced at time=t,, the time needed for the quenching of the mean flow has beguRecall that the
modified velocity fieldu to respond to this additional forcing quenching takes place in a time 6f o) so the quenched
can be estimated by applying dimensional arguments on th&tate at ten time units should have already been asymptotic
terms in Eq.(18). This time scale i©(o). In this paper, we for our c=1 state herd We see that the rolls have “straight-
considerc=1 so that we expect the mean flow to beened out” in that they have lost their curvature and have
quenched in a time scale Gf(1) from timet,. developed angular bends. More strikingly, the straightened
For a pattern that does not have the mean flow, such asrall patches become stationary, leaving the only dynamics in
pattern comprising straight parallel rolls with no defects orthe pattern to come from the motion of defects such as dis-
concentric circular rolls, the quenching procedure shouldocations and grain boundaries. To illustrate this transition
leave the convective properties, such as the Nusselt numbdrom a dynamical state to a seemingly “frozen” one, we plot
of the fluid unchanged. The Nusselt number is the ratio ofn Fig. 3 the time series of the rate of change of the tempera-
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_o'l . : When the quenching is turned off at tinhe- 100 so that the mean
90 495 500 505 510

flow is restored, spiral defect chaos is observed. The planform
shown here is at 500 time units after the restoration of the mean
FIG. 3. The rate of change of the temperature figli/dt vs  flow.
time t for the four locations in the cell indicated in Fig(a2. Prior
to quenching of the mean flow which takes place at time, Before we conclude this section, we qualitatively compare
=500, the derivativel T/dt fluctuates and differs from zero. After the differences between the states observed when the mean
guenching, it approaches zero in a time scal®©¢1), suggesting flow is quenched and at high Prandtl numbers, for which the
that the pattern is approaching stationarity. mean flow is weak(Recall that the magnitude of the mean
flow is inversely proportional to the Prandtl numbestart-
ing from the state shown in Fig.(®&, we instantaneously
increased the Prandtl number for that state frem1 to o
o . =10 at timet=500. Although increasing the Prandtl number
mﬂcantly different from zero a? al.1<.Fq. However, after the changes the convective properties of the fluid and hence the
qugnchlng of the mean flow is initiated BEHQ:S(_)O’ thg dynamics of the state, we nevertheless obsefsed Fig.
derivative dT(x,y)/dt relaxes to approach zero in a time g(g)] stripes with angular bends that are similar to those ob-
scale ofO(1), suggesting that all dynamics is becoming fro- served when the mean flow is quenched. Thus, the states
zen and that a stationary pattern is being approached.  gpserved when the mean flow is quenched and unquenched
We have also repeated the quenching of the mean flow ajtates observed at high Prandtl numbers are similar. In addi-
other Rayleigh numbers ranging froex0.6 to 3.0, and for  tion, we also show in Fig. (6) the state observed when we
different instances of the initial condition, E¢RO). In all invoke the mean-flow quenching procedure after increasing
cases, we observed similar stationary planforms as shown ifhe Prandtl number to-=10. We see that it is again similar
Fig. 2b). In addition, this spiral-to-angular transition can beto the pattern atr=10, suggesting that even at=10, the
observed in the reverse direction. When the mean-flowesidual mean-flow components are negligible.

Time t

ture field at several locations in the cell. We see that,tfor
<ty,=500, the derivatived T(x,y)/dt fluctuates and is sig-

guenching is turned off at a later tinte=550 so that the Finally, we note that, contrary to the results of Assenhe-
mean flow is again restored to the system, the angular bends
develop into spirals and the stationary planform becomes (a) (b)

dynamical again. Spiral defect chaos is fully restofédi].

Furthermore, the stationary textures of stripes with angular y
bends can also be observed when the quenching is initiated
at other times. For example, instead of initiating the mean- 7

\"
flow quenching procedure at a time when a spiral defect
chaotic state is already asymptotic, we have also initiated the é
guenching procedure immediately at the start of the simula-
tion, t=t,=0, again using Eqg19) and(20) as initial con- \
q
ditions. In Fig. 4a), we show the planform after 100 time & m ([ “ (c

units for t.he parametere?— 1.0,0=1, ande=_Fy=20. We . FIG. 5. (a) The pattern observed when the Prandtl number is
see that it comprises patches of locally straight r_oIIs end'”%stantaneously increased from=1 to o=10 comprises stripes

into each other in angular bends. There are no spirals presenfii, angular bends that are similar to the quenched patterns in Fig.
When the mean flow is restored at tire 100, we find that, ). The pattern shown here is at 100 time units after the Prandil
after a time ofO(1), spiral defect chaos appears, as can b&umber has been instantaneously increased. The parameters corre-
seen in Fig. 4) which shows the planform at 500 time units spond to those of the state in Fig. @) When the mean flow is

—

after the mean flow has been restored. quenched for the-= 10 state ofa), we see that the resulting pattern
Thus, we have shown that spiral defect chaos does na$ qualitatively unchanged. Shown here is the state at 100 time units
exist without the presence of the mean flow. after the mean flow has been quenched.
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26l ———— 1e=3.0
2.4r :
o I I N N "'__'_,......-.......‘....... e=1.8
2.2r .
f;: ol P e=1.2
FIG. 6. (@ Midplane temperature field at time=500 for pa- [ T zfg‘z‘
rameterse=0.15, 0=1, andl',=I"y=20. The stripe texture com- 147 o leco 1
prises patches of locally parallel rolls and arcs that are stationary ) ) )
(b) The state ofa) observed at ten time units after the mean flow is '380 490 500 510
quenched. The curved rolls have transitioned into stripes with an- t

gular bends that are stationary. FIG. 7. Time series of the Nusselt numbE(e,t) for stripe

) . . textures and spiral defect chaos at several values lnéfore (de-
imer and Steinber20,21], we do not observe the transition noted by solid linesand after(dotted lines quenching of the mean
from spirals to targets as the Prandtl number is increased ifow which occurred at timeé,=500. All data reported here are for
o=10. Several explanations are plausible: First, in the Asthe Prandtl numbes=1 and a rectangular cell of aspect rakig
senheimer and Steinberg experiments, non-Boussinesq e.f.—ryzzo,
fects are significanf20,21], whereas our direct numerical
simulations are only for Boussinesq fluids. Second, oufEgs.(2) and(3), can be interpreted as the driven Boussinesq
smaller aspect ratios may not support the formation of tarequations with a driving force ™ that is turned on at time
gets, and that we would indeed see the spiral to target trang . Owing to this driving, we expect the convective proper-
sition in larger aspect ratios. Third, the transition to targetsies of the fluid to be stronger at tinte>t, than at timet
may be strongly dependent on the history of the system, inct,. This is illustrated in Fig. 7. The fractional change in
particular, on the patkin system spagethat the parameters the Nusselt numbek N/N caused by the introduction of the
traverse. guenching of the mean flow increases with the reduced Ray-
leigh number. A best linear fit to the data yields the relation

B. Mean flow and prechaotic stripe textures AN/N=(0.052+0.005 €. 21)

At lower Rayleigh numbers near the convective threshold,
the planforms observed take the form of stripe textures rathefhus, for example, whee~1, modifying the velocity field
than exhibiting spiral defect chaos. They comprise patches ¢b quench the mean flow introduces a chargg&% to the
locally parallel rolls and arcs such that each patch terminategveraged convective properties of the fluid.
at the boundaries of another at a different orientation, and the
boundaries between the patches are usually populated by de- D. Wave number distributions
fects. In general, the stripe textures are stationary after tran-

sients, except for the motion of defects at the grain bound- In this section, we quantify the differences .between the
aries. In Fig. 6), we show a planform of the midplane patterns observed with the mean flow and with the mean

temperature field at timé=500 ate=0.15 ando=1 in a flow quenched by study!ng the wave number distributions.
o We compute the probability density function of wave num-
rectangular cell of aspect ratlo,=1"y=20 .

. . _ bers,P(k), from a time average of the patterns. We used the
When the mean flow is quenched at tivet, =500, we local method discussed in R€fl5] to calculate the wave

observe that the stationary stripe textures remain stationary; o
and that those rolls that are curved are straightened out. Tmeumber distributions. We have found that, for smaller aspect

: A T : ratiosI'=20, this method produces better statistics than glo-
resulting pattern, shown in Fig.(® which is at ten time . . ]
; . ! bal Fourier transform methods that were used in previous
units after the quenching, comprises patches of angular struc-" .
éxperiment410,12,14. The mean of the wave number dis-
tures that replaced patches of curved arcs. e ;
tribution then gives the mean wave numbky(e) as a func-
tion of the reduced Rayleigh number
Before we highlight the differences, we point out that the
One way to quantify the changes introduced by themean wave numbers obtained from our numerical simula-
guenching procedure to a pattern is to look at its global contions of spiral defect chaos lie within the Busse stability
vective properties, such as the Nusselt number. For a patteballoon[1,42]. In addition, they are also consistent with ex-
with the mean flow, the Nusselt number will be different isting theory for the selection of wave numbers in spiral de-
from those of the unmodified velocity field of E(L8) be-  fect chao418,19], which suggests that the wave numbers of
cause the latter is not a solution to the Boussinesq equationsonvecting spirals are “frustrated,” i.e., they lie between two
An alternate way of saying this is that E4.8), together with competing selection mechanisms, selection by focus-type

C. Nusselt numbers
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FIG. 8. Mean wave numbekk) for various reduced Rayleigh FIG. 9. Correlation lengtl§ vs the reduced Rayleigh number
numberse. The circles denote wave numbers estimated for spiralThe symbols are as defined in Fig. 8. The dashed line corresponds
defect chaotic states at=1 andI'y=T',=20 from our direct nu-  to the power lang e 12
merical simulations averaged over different random initial condi- . L
tions. The crosses denote wave numbers for states observed at t-%ne local pattern in focus-selected C_onve_Ct_lon includes rolls
time units after the mean flow is quenched. For comparison purg at form closed contours about a point within the cell. In our
poses, the diamonds denote wave numbers obtained in the expefCtangular geometries, the four corners act as focus centers,
ment of Ref.[10] in a cylindrical cell of '=780=0.95. The @&scan be seen by the presence of approximately axisymmet-
dashed line denotes the unique wave nuniberossessed by focus- i€ roll patches emanating from the corners, see Fig). 2n
selected convection at=1, and is represented by E3). The the absence of the mean flow, the wave number selected
dotted line denotes the unique wave numkgselected by dislo- therefore appears to be dominated by that selected by the

cations. focus centergi.e., the cornensto give a mean wave number
consistent with that selected in focus-type singularities.
singularities [43] and selection by dislocationf44,45. Furthermore, in the absence of the mean flow, the wave
These two sets of selected wave numbersratl, are de- NumMbersk; lie at the boundary of the zigzag instabilt32].
noted in Fig. 8 by the dashed and the dotted lines, resped e patterns observed with the mean flow quenched are thus
tively. We see that our direct numerical simulations producedlominated by lateral “zig and zag” bendings, leading to the
wave numbergdenoted by the circlesthat lie within these ~ StriPes with angular bends observed in Figs) 2nd &b).
two sets of selected wave numbers. For comparison pur- Ve have also computed the correlation lengtk) of the
poses, we have also included the mean wave numbers calcBatterns as a function of. The correlation length, defined |
lated in a previous experimefit0,14 performed in a cylin- Nere as the inverse of the standard deviation of the probabil-
drical cell withT" =78 ando=0.95 (diamonds. We see that, ity density functionP(k), is a measure of the average length
at lower Rayleigh numbers, the mean wave numbers frongcalé of correlated regions in the pattern. In Fig. 9, we show
our simulations agree with the experimental findings. How-&(€) calculated for both unquenched pattefdenoted by the
ever, at higher Rayleigh numbers, the wave numbers fror§ircles in Fig. 9 and for patterns observed when the mean
our simulations are smaller than those of the experimentdlow is quenched(crosses For comparison purposes, we
Presumably, the smaller aspect ratios used in our simulatiof&Ve also included the correlation lengths calculated from a
mean that our wave numbers are affected by finite size efPr€vious experimenitl0,14} performed in a cylindrical cell
fects. with I'=78 ando=0.95 (diamond$. We see that the corre-
For the range 058 e<1.2, the mean wave numbers of the 1ation lengths for the states when the mean flow is quenched
stripes with angular bends when the mean flow is quenche@®, On the average, about twice as large as those for spiral
(denoted by the crosses in Fig) 8ppear to fall onto a defect chaos at all values ef In addition, the qorrelat!on
straight line whose mathematical form can be obtained fronfengths for the unquenched patterns can be fitted with the
a linear fit, power lawéx e~ Y2 as has been suggested by past experi-
ments[12,14], and which is predicted by dimensional argu-
(k)=(3.14+0.05—(0.16+ 0.06) . (220 ments to be valid at least near threshold. However, the same
cannot be said for the quenched states. In fact, the data sug-
This relation is consistent with the wave numbers selected bgeost th?]t while lan. eerJonerrl]t of 1/2 m|ghth be fitted fore
focus-type singularities at Prandtl numhes 1 [43], - Z the correlation lengths appear to have saturatedl at
~I"=14 for e<0.7. This suggests that finite size effects be-
come important, and that, in order to obtain a better estimate

ki=3.117-0.1Z. (23 of the scaling relation for the patterns observed when the
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FIG. 10. The probability density functioR(y) of the curvature FIG. 11. The probability density functiofi(x) of the curvature

x- The solid line is for the spiral defect chaotic stateeat1.0, X The solid line is for St”Pe textures a1=0..1§,. o=1, gndl"x
o=1, andl',=T',= 20 averaged over different random initial con- =I'y=20 averaged over different random initial conditions and

ditions and timest =400-500. The dashed line is for the stripes iMeSt=400-500. The dashed line is for the stripes with angular

with angular bends observed at ten time units after the mean flof€"ds observed at 10 times units after the mean flow has been
has been quenched. qguenched. Becaude(y)~0 for y=0.5, the region 05 x=<1 is

not plotted. The inset shows the region€.,¢<0.4 enlarged.

mean flow is quenched, we would need to use a larger aspect . _ . . .
ratio. Owing to the lack of data over more decades of thd@Pidly with increasingy. Both the comparisons for spiral

reduced Rayleigh numbers, actual fittings to the data werd€€Ct chaos and for stripe textures suggest that the conse-
not carried out. quence of quenching the mean flow is to straighten out the

rolls.
o In addition, the distribution a¢=0.15 for the quenched
E. Curvature distributions case is higher fogy=0.05 as well as for 0% y=<0.4 (see the
Finally, we quantify how much the quenching of the meaninset of Fig. 1}, and lower otherwise. This suggests that
flow straightens the rolls by looking at the distribution of the another consequence of quenching the mean flow is the de-
local curvaturey, defined at every point in the planform to velopment of angular structures that have large curvatures.
be the magnitude of the divergence of the unit wave vector:
" F. Mean flow and lateral boundaries
x=|V-kl|. (24) . . o
In experiments where the Rayleigh number is sufficiently
high, it has been frequently observed that convection rolls
terminate perpendicularly into the lateral walls. We show in
this section that the mean flow generated by amplitude gra-
dients near lateral walls can be used to explain this phenom-
enon, although the applicability of this argument rests on a
number of factors, among them the presence of defects

=I'y=20, as well as for Fhe resgltmg stripes with angularwhich affects the ability of the patterns to reorient them-
bends observed at ten time units after the mean flow 'Selves

guenched. In Fig. 10, we plot the two distributions. The cur- A .

vature distribution for spiral defect chamlid line) peaks at If we call n the outward unit vector normal to the lateral
a value ofy~0.1, suggesting that the pattern is dominatedooundary andk the wave director of the rolls, then we can
by spirals whose radius of curvaturejs '~ 10, consistent define the wall-roll obliqueness angle as

visually with the pattern shown in Fig(&. We see that this

A value of y=0 corresponds to a straight roll, whereas a
value ofy=1 corresponds to a roll with a radius of curvature
of unity.

We have computed the probability density functi®(y)
for spiral defect chaos observed et 1.0, o=1, andI’,

peak broadens to become a plateau atyx@<0.1 for the ®=arcco$k-n|. (25
guenched statédashed ling suggesting an increase in the
dominance of straighter rolls in the pattern. In practice, the numerical value @f at a particular location

We observed similar results for the comparison of thealong the lateral boundary is obtained by averaging(Eg).
curvature distribution for the stripe textures. In Fig. 11, weover a lengthr =0.5 tor=1.5, wherer is the perpendicular
show the comparisons for a state &t 0.15. We see that distance away from that location along the lateral boundary.
both distributions, witHsolid line) and without(dashed ling ~ The value® = /2 corresponds to rolls terminating perpen-
the mean flow, decrease approximately monotonically andlicularly into the walls. The common occurrence of this
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FIG. 13. The change in the mean wall-roll obliqueness angle
(®) as a function of time, averaged over different random initial
conditions. The parameters here are 1.0, o=1, andI'y,=T,
=20. The mean-flow quenching takes place at time,=500, so
that, for 496<t=<500, the mean wall-roll obligueness angle is for a
pattern whose bulk dynamics exhibits spiral defect chaos, whereas

value remains a phenomenological observation, withoufor 500<t<510, the bulk dynamics is made up of stripes with
much theoretical understanding, although it has been foun@hgular bends.
[ég_t(g?t_?g;_s not fixed by the physical boundary conditions, trate this result in Fig. 13 for one particular reduced.Raerigh
However, when rolls do not terminate perpendicularly at anumberez_ 1.0. In this case, the mean-flow_quenchmg takes
lateral boundary, variations in the amplitude of the convecP!ace at timet=t,=500. We see that, at time=500, the
tion rolls as it decays near the lateral boundaries result in thE€an wall-roll obliqueness angle moves away frdin
generation of a mean flojRecall from Eq(10) that a mean — 7/2 in a time scale oD(1).
flow is generated by inhomogeneities in the wave numbers 1he above argument that the mean flow restores the rolls
and amplitudes of the convection roJl¥he normal compo- © @ perpendicular orientation may not always be applicable.
nent (with respect to the lateral boundanyf this mean flow For example, when we performed_5|mulat|ons in a cylindri-
is canceled by the flow generated from slow pressure gradf@ Cell of aspect ratid’=30, we find that, a&=1.0, the
ents, resulting in the mean flow being parallel to the lateraMean wall-roll obliqueness ang(®) still remains close to
boundary. It then tends to push the rolls back to a perpen?/2 when the mean flow is quenched. This can be seen more
dicular orientation. The actual calculations are worked out ir£/€arly in Fig. 14, where we show the probability density
Appendix B. The importance of this mean flow in ensuringP(®) of wall-roll obliqueness angles along the lateral
that the rolls terminate perpendicularly is indicated by Ob_bogndanes for states obsgrveq in a rectangular cell o.f aspect
serving that, in the absence of the mean flow, oblique rollgatio I'y=I'y=20 and cylindrical cell of aspect ratid
are more prevalent. In Fig. 12, we plot the wall-roll oblique- =30- We see that in a cylindrical cell with the mean flow
ness angle averaged over the lateral boundaries for patterfge€nched, the peak & ~m/2 is still observed after the
observed at=>500 at various reduced Rayleigh numker ~Mean flow has been quenched. One possible explanation
Prandtl numberr=1, and in a rectangular cell of aspect mlgh_t be that, in a cylindrical cel!, there are more defects
ratio I',=T',=20, with the mean flow and with the mean existing near the lateral boundaries and that these defects
flow quenched. We see that, with the mean flow, the rolls ardhen pin the rolls, preventing them from reorienting away
close to perpendicula® ~ /2. However, when the mean from ©®=m/2 when the mean flow is quenched.
flow is quenched, the rolls are more obliqU@==/2. In Another instance where the above argument does not ap-
fact, the difference in the mean wall-roll obliqueness anglg?ly IS at low Rayleigh numbers. From E@7) in Appendix
between the states with the mean flow and with the meaR: the magnitude of the mean flo| €™ so that at low

flow quenched,A(®), increases approximately linearly Rayleigh numbers, the mean flow may not be strong enough
with e to reorient the rolls perpendicularly. This is evident in Fig.

6(a), where, at the reduced Rayleigh numleer0.15, rolls

are seen to terminate with an acute angle at the lateral walls.

In this case, the presence of a restoring mean flow can also

as the inset of Fig. 12 depicts. be visualized. The mean-flow vorticity plot corresponding to
When the mean flow is quenched, the reorientation of thehis pattern, shown in Fig. 18), shows the presence of

rolls away from® = /2 is almost instantaneous. We illus- strong vorticity along the bottom half of the left wall and the

FIG. 12. The mean wall-roll obliqueness angl@) as a func-
tion of the reduced Rayleigh numbefor states with the mean flow
(circles and with the mean flow quenchedrosses The inset
shows the difference between the two sets of daAt)), as a
function of e.

A(©)=(0.16=0.01)e, (26)
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FIG. 16. The maximum mean-flow magnitude vs various trial
FIG. 14. (a) Distribution of angles where rolls terminate at a values ofp. The mean-flow magnitudes are normalized by their
lateral boundary in a rectangular cell of aspect rdtje=T", = 20. values ap=0, i.e., when there is no quenching. We see that, when
The solid line shows the distribution for the spiral defect chaoticp~1.5, the mean flow goes to zero, for all three Prandtl numbers.
state averaged over different initial conditions et 1.0 and o
=1. The dashed line shows the distribution for the state with thelumber of the state in Fig. 6 is increased frem 0.15 to
mean flow quenchedb) The solid line shows the distribution for €=1.0, the mean flow becomes strong enough to reorient the
spiral defect chaos observed in a cylindrical cell of aspect fatio rolls to become perpendicular to the lateral walls, and sub-
=30 ate=1.0 ando=1. The dashed line shows the distribution for sequently disappears.
this state but with the mean flow quenched.
IV. CONCLUSION

top half of the right wall. There, the restoring mean-flow
vorticity takes the form of long and narrow circulating “jets” In this paper, we have described a procedure to construct
that are about one roll size wide and several roll sizes longa modified velocity field that does not have any mean flow in
In Fig. 150b), the vorticity is plotted as a function of distance a convecting flow. We have applied this procedure to show
away from the lateral wall along the solid and dashed horithat spiral defect chaos does not survive when the mean flow
zontal lines shown in Fig. 18). The existence of a positive is quenched. Instead, a pattern characterized by textures of
vorticity patch close to the wall and a negative patch furtheistripes with angular bends appears. We have also shown that
away from the wall, which together indicate the presence ofhe mean wave numbers of these quenched patterns approach
a restoring mean flow, agrees qualitatively with the theoretithose selected by focus-type singularities, which, in the ab-
cal results of Fig. 18 in Appendix B. When the Rayleigh sence of the mean flow, lie at the boundary of the zigzag
instability.

(@) (b) We next presented a heuristic argument on how the mean

a flow can contribute to rolls terminating into a lateral bound-
ary perpendicularly. We provided data to show that, in the
absence of the mean flow, the rolls begin to deviate from a
perpendicular orientation, and this obliqueness increases
with the Rayleigh number. However, the ability of this mean
flow to restore the rolls to a perpendicular orientation may be
impeded by the presence of defects that do not allow the rolls
to reorient themselves, and at low Rayleigh numbers where
the restoring mean flow is weak.

FIG. 15. (a) The mean-flow vorticityw,(x,y) corresponding to ACKNOWLEDGMENTS
the stripe texture of Fig.(@) obtained using Eq16). Light regions ) . )
correspond to positive vorticity, dark regions to negative vorticity. 1 hiS Work was supported by the Engineering Research
The important feature in this vorticity map is the presence of “jet- Program of the Office of Basic Energy Sciences at the U.S.

like structures along the bottom half of the left wall and the top halfDepartment of Energy, Grant Nos. DE-FG03-98ER14891
of the right wall.(b) The vorticity w,(x) is plotted along the solid and DE-FG02-98ER14892. We acknowledge the Caltech

and the dashed horizontal lines showr(ah The shape ob),(x) is ~ Center for Advanced Computing Research and the North
to be compared with Fig. 18 in Appendix B, where a positive and aCarolina Supercomputing Center. We also thank Paul Fischer
negative vorticity patch sets up a restoring mean flow. for helpful discussions.
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FIG. 17. Straight and parallel convection rolls with wave direc- Gy
tor k terminating at a lateral boundary with outward normat an
angle of obliquenes®. Note that, by our definition, @0 </2.
The perpendicular distance away from the lateral wak. is

APPENDIX A: DERIVATION OF QUENCHING FIG. 18. (a) The functionf(®,x) defined in Eq(B5) which is
OF THE MEAN FLOW the normalized vertical component of the mean-flow vorticity. It is

. . . . plotted here for several values & and vsx/¢. (b) The function
In this appendix, we derive the functional form of the (@ yy defined in Eq.(B8) which is the normalized mean-flow

forcing term® that is to be added to the fluid equation, EQ. magnitude. It is plotted here for several valuesiolnd vsx/&.
(1), to make the resulting fluid dynamics have zero mean
flow.

As mentioned in Sec. Il C, the mean flow comprises a
local component generated by the Reynolds stress
1/(2m) [37d¢u-V u, and a global component driven by a
slow horizontal pressure gradient that is present in order to
guarantee the |ncompre53|bll|ty condition, HE). Thu_s, i With wo(k,z) and ¢(k,z) the vertical profiles of the vertical
the Reynolds stress is subtracted from the dynamics at elocity and the potential of the horizontal velocities, respec-
times, then the mean flow will not be generated. We thu y P , resp

dpo(K,z) B awg(k,z)

1(k,z)=wq(k,z)d

d2¢0(K,2),
(A5)

suggest that %ively. For systems satisfying the rigid boundary condition,
99 Eq. (7), these functions are the familiar Chandrasekhar func-
1 (on 2 tions [47].
D(x,y,t)= 5 )s d¢pj71/2dzu'viui . (AD We can then rewrite EqA2) as

1/2
where the operatop 1_’21,2dz serves as an average over the ¢g,up=V, ps+|(k,Z)R(X,y)—pJ dzl(k,z2)R(x,y).
-1/2

depth of the cell. Thigh can then be subtracted from the

fluid equation, Eq(1), resulting in Eq.(198). (A6)
We now need to evaluate the value of the constanto

do this, we rewrite the equation for the slow distortions, Eq.Integrating Eq(A6) with respect ta twice, and making use

(10), as of the boundary condition, Ed7),
1 2
70z o=V 1 Pst5— dou-Vu, —®. (A2) oup=p(2)V, pstI(k,2)R(xy)
7Jo
12
—p(z dzl(k,z)R(x,y), A7
Following Ref.[22], the Reynolds stress term near threshold P( )pffllz (k2)R(x.Y) A7)

takes the form

1 r2 with
21 0 1 1
p(2)= —( 2°— —) (A8)
where 2 4
R(x,y)=kV, - (kA?), (A4)  the Poiseuille profile, andi(k,z) the double integral of
I(k,z) with respect toz. Employing the incompressibility
and condition, Eq.(11), we then arrive at the equality
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1/2 0.4 T T T T
12f dzJk,z)
-2 0351 1
P="" (A9)
f dzl(k,z) 0.3f ]
—-1/2
0.25} _

Evaluating these integrals numerically yields-1.5 for the =
rigid boundary condition, Eq(7). Moreover,p is relatively — ; g2l i
independent of the wave numbek, varying from p g

=1.4886 atk=2.8 to p=1.4887 atk=k.=3.117 and top 0.15} .
=1.4886 atk= 3.4, suggesting the validity of treating it as a
constant. 0.1} -

Finally, to numerically confirm this result, we carry out

the quenching of the mean flow, as described in(&§), for 0.05¢ i
a range of values fop, at e=1.0 in a rectangular cell of , , ‘ ,
I'y=Ty=20. At ten time units after affecting the quenching, 0 0.2 0.4 0.6 0.8 1
we then measure the maximum magnitude of the mean flon O/(n/2)

as a function ofp. We plot our results in Fig. 16, where we
show the_ maximum mean-flow m_agnltudeormallzed _by function of the wall-roll obliqueness angl®. It increases mono-
the maximum mean-flow magnltut_je observed WIthouttonically from zero a® =0 (rolls parallel to the wall

qguenching vs p for data from three different Prandtl num-
bers. We see that, whesr=1.5, the normalized maximum
mean-flow magnitude is indeed zero.

FIG. 19. The maximum magnitude of the mean flaivas a

w(X)=2yA3k?£2f(0,%), (B4)

where the normalized mean-flow vorticity

APPENDIX B: RESTORING THE MEAN FLOW NEAR
A LATERAL BOUNDARY X

£cosO

(B5)

f(@,x)ztar(@))secﬁ( )[1—3tanﬁ

=
In this appendix, we show that a set of straight and par- £cosO

allel rolls that are oriented obliquely at an andfe to a
lateral boundary sets up a mean flow that tends to restore the plotted in Fig. 18a) for several representative values®f

rolls back to being perpendicular to the lateral boundary. Theve see thai is positive forx/é<1, and negative otherwise.
various quantities used here are defined in the sketch in Figthe currents from this vorticity pair will then drive the rolls

17. back to a perpendicular orientation.
We will make the assumption that the wave vectors of the The mean flow generated by this vorticity can also be
rolls are constant near the lateral boundary, easily computed. Along the lateral wall, it is given by
k=(—kcos®,—ksin®), (B1) U] = 9]k, |V - (kA?). (B6)

and that the convection amplitude within a correlation length(The component of the mean flow normal to the lateral wall

¢ of a lateral boundary is suppressgd48): is canceled by the flow coming from the slow pressure gra-
dient) Using Egs.(B1) and (B2), we arrive at

A(x,y)=AotanI‘( ) (B2) |U|=2yAZk%¢ 1g(0,x), (B7)

X
£cos®

) ) ) ) _ where the normalized restoring mean-flow magnitude in the
The quantityA, is the amplitude in the bulk. The correlation gjrection of the lateral wall,

length ¢=\2eY2¢, with £,=0.385. The variable is the

perpendicular distance away from the lateral boundary. . X X
Then, from the Cross-Newell equatif22], the amplitude 9(0,x)=sin(®)sectt £c050 ) ¥ cos0 | (B8)
gradients near the lateral wall will result in a non zero mean-
flow vorticity o given by is plotted in Fig. 18) for several representative values of
0.
w=7yz-V, X[kV, -(kA?)], (B3) Finally, we plot the quantity mai| as a function of in

Fig. 19. We see that the restoring mean-flow magnitude
where v is a constant that is inversely proportional to the grows monotonically from zero @ =0 (corresponding to
Prandtl numberr. (If we relax the assumption that the wave sets of rolls parallel to the lateral wallo attain its largest
numbers of the rolls are constant, then the compression andlue at® — /2 (corresponding to sets of rolls perpendicu-
dilation of the rolls as well as inhomogeneities in their cur-lar to the wal). Our analysis actually breaks down fg®
vatures will also contribute to the mean flopvBubstituting —77/2|Ssl’4 because modifications at the next order in Eq.
Egs.(B1) and(B2) into Eq. (B3) then gives (B2) become importanit46].
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