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Mean flow and spiral defect chaos in Rayleigh-Be´nard convection
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We describe a numerical procedure to construct a modified velocity field that does not have any mean flow.
Using this procedure, we present two results. First, we show that, in the absence of the mean flow, spiral defect
chaos collapses to a stationary pattern comprising textures of stripes with angular bends. The quenched patterns
are characterized by mean wave numbers that approach those uniquely selected by focus-type singularities,
which, in the absence of the mean flow, lie at the zigzag instability boundary. The quenched patterns also have
larger correlation lengths and are comprised of rolls with less curvature. Secondly, we describe how the mean
flow can contribute to the commonly observed phenomenon of rolls terminating perpendicularly into lateral
walls. We show that, in the absence of the mean flow, rolls begin to terminate into lateral walls at an oblique
angle. This obliqueness increases with the Rayleigh number.
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I. INTRODUCTION

Rayleigh-Bénard convection in a horizontal layer of flui
heated from below provides a canonical example for s
tially extended systems exhibiting pattern formation@1# and
spatiotemporal chaos@2–4#. ~The latter term refers to state
that are disordered in space and that show chaotic dyna
in time.! In this paper, we present results from direct nume
cal simulations of Rayleigh-Be´nard convection to investigat
the importance of nonlocal flow modes, generally referred
as the mean flow@5–9#, in the formation and dynamics o
patterns and spatiotemporal chaos.

In a typical Rayleigh-Be´nard convection experiment,
fluid layer is confined between two horizontal plates, and
thermally driven far from equilibrium by maintaining th
bottom plate at a temperature that is higher than that of
top plate. As the temperature difference is increased, the
undergoes an instability to a state in which there is mot
driven by the buoyancy forces. When the temperature dif
ence between the plates is above but near this conve
threshold, a pattern comprised of patches of locally para
convection rolls forms with roll diameters that are close
the depth of the cell; see, for example, Fig. 6~a!. When the
temperature difference is increased, the fluid undergoes o
instabilities that may result in the pattern developing
simple or a chaotic time dependence. Finally, when the t
perature difference is increased further, spatiotemporal c
otic states may appear. In particular, a state called spiral
fect chaos@10# is observed for the Rayleigh numberR
*3000, the Prandtl numbers;1, and the aspect ratioG
*16. This state is a disordered collection of spirals that
tate in both directions and coexist with dynamical defe
such as grain boundaries and dislocations@see, for example
Fig. 2~a!#.

*Electronic address: ChiamKH@MailAPS.ORG
URL: http://www.cmp.caltech.edu/;stchaos
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The following facts are known about spiral defect cha
The parameter values for which it appears@10–14#; the dis-
tributions of local roll properties such as the wave numb
@15#; statistics of spiral and defect populations@15,16#; the
mechanisms for the generation of chaos from spatial diso
@17#; the wave number selection mechanism for spir
@18,19#; and the conditions under which spiral defect cha
transitions to other states. Of particular interest to this pa
are experiments@20,21# that have observed that the spira
transform into targets when the Prandtl number is increa
from s;1 to s;10 and when the Rayleigh numberR
*3500. While this observation establishes that spiral de
chaos occurs only at low Prandtl numbers, it does not al
us to conclude which of the many dynamic phenomena
occur at low Prandtl numbers@1# is responsible for the for-
mation of spiral defect chaos.

One particular phenomenon that becomes importan
low Prandtl numbers is the presence of a mean flow. M
flow is the name given to the velocity field with a nonze
mean over the depth of the convective cell that is genera
by the variations of the structure of the convection rolls su
as their curvature, amplitude, and wave number, and tha
turn couples through advection to further modify the r
structure. Its magnitude is approximately inversely prop
tional to the Prandtl number@22#.

It is believed that spiral defect chaos is an effect of t
mean flow which in turn is important at low Prandtl numbe
@10,14#. This hypothesis has been investigated in numer
studies of model equations of convection. For example,
coupling a mean-flow-like field to the Swift-Hohenbe
equation@23#, chaotic behavior is observed@24#. Further-
more, when the parameter in the model that gives
strength of the mean flow is made large, spatiotemporal c
otic states akin to spiral defect chaos are observed@25–28#.
However, the above results are tenuous because of two
sons. First, the Swift-Hohenberg equation describes the
tiotemporal behavior of a field in two dimensions, where
convection is a three-dimensional phenomenon. Seco
©2003 The American Physical Society06-1
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there are known limitations to the Swift-Hohenberg mod
ing. For example, it is known that the long-time dynamics
the Swift-Hohenberg equation may not correspond to tha
the Boussinesq equations of convection. In particular, Sw
Hohenberg models exhibit spiral defect chaos as a trans
behavior, whereas in experiments, spiral defect chao
known to persist for much longer times@29#. In addition, it is
also known that the small-scale structure of the mean flow
the cores of the spirals, which might be crucial for the p
sistence of spiral defect chaos, is not perfectly captured
the Swift-Hohenberg equation@29#.

Our goal in this paper is to show by direct numeric
simulations of Rayleigh-Be´nard convection that spiral defec
chaos is indeed a consequence of the presence of the
flow. In the absence of the mean flow, we find that sp
defect chaotic states cease to exist, and are replaced by s
whose statistical properties differ from those of spiral def
chaos. In general, studies of the mean flow are difficult
perform in experiments, primarily because it is difficult
measure the mean flow in an experimental setup@30–32#.
This is due to several reasons, namely, that the magnitud
the mean flow is small~typically of the order of 1% of the
magnitude of the velocity of the convecting rolls!, and that it
exists only in distorted and not regular patterns. To the b
of our knowledge, there has only been one experiment
has successfully imaged aspects of the mean flow, but on
a simple distorted pattern@33,34#. It is not clear if such im-
aging techniques can be applied to more general and com
cated patterns. Thus, direct numerical simulations are
ticularly valuable for the study of the mean flow.

We achieve this goal by numerically constructing
gedankenfluid whose velocity field is modified to have zer
mean flow. By investigating the states that arise from
dynamics of this fluid and by comparing them with spir

FIG. 1. Time series of the Nusselt numberN(e,t) for patterns
comprising straight parallel rolls that have no mean flow at sev
values ofe before~denoted by solid lines! and after~dotted lines!
quenching of the mean flow, which occurred at timetq550. All
data reported here are for the Prandtl numbers51 and a rectangu-
lar cell of aspect ratioGx5Gy520. ~In order to achieve straigh
parallel rolls, periodic lateral boundaries were imposed and a s
sinusoidal perturbation in the temperature field was used as
initial condition.!
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defect chaos, we can infer directly the role of the mean fl
in the formation and dynamics of spiral defect chaos.

Once we have the capability to remove the mean fl
from the fluid dynamics, we can apply it to the study of oth
problems. One such problem that we have investigated is
relation between the mean flow and lateral boundaries. Us
our numerical simulations, we have shown how the me
flow can contribute to the commonly observed phenome
of convection rolls terminating perpendicularly into later
walls, an observation that is still without much theoretic
understanding.

The remaining part of this paper is organized as follow
In Sec. II, we define the equations governing Rayleig
Bénard convection, what a mean flow is, and how it can
measured and eliminated numerically. In Sec. III, we pres
results on the relation between the mean flow and spiral
fect chaos, stripe textures, and lateral boundaries. In Sec
we present our conclusions.

II. DEFINITIONS

A. Boussinesq equations

The evolution of a low-velocity and hence approximate
incompressible convecting fluid is governed to a good
proximation by the three-dimensional Boussinesq equati
@1#. They are the combination of the incompressible Navi
Stokes and heat equations, with the further assumption
density variations are proportional to temperature variati
and that this density variation appears only in the buoya
force. Written in a dimensionless form, they are

s21~] t1u•“ !u~x,y,z,t !52“p1¹2u1RTẑ, ~1!

~] t1u•“ !T~x,y,z,t !5¹2T, ~2!

al

ll
he

FIG. 2. ~a! An example of spiral defect chaos observed in
numerical simulation using the finite-difference scheme@35#. The
midplane temperature field is plotted at timet5500 for parameters
e51.0, s51, andGx5Gy520. Dark regions correspond to col
sinking fluid, light regions to hot rising fluid. The spiral defe
chaos planform is characterized by a disordered collection of sp
rotating in both directions and coexisting with dynamical defe
such as grain boundaries and dislocations. The labels ‘‘1’’ to ‘‘
are discussed in Fig. 3.~b! When the mean flow is quenched, spir
defect chaos collapses to a stationary pattern of textures of st
with angular bends. The planform shown here is at ten time u
after the quenching has been introduced to the state shown in~a!.
All other parameters are unchanged.
6-2
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“•u50. ~3!

The fieldu(x,y,z,t) is the velocity field at point (x,y,z) at
time t, while p andT are the pressure and temperature fiel
respectively. The variablesx andy denote the horizontal co
ordinates, while the variablez denotes the vertical coordi
nate, with the unit vectorẑ pointing in the direction opposite
to the gravitational acceleration. The spatial units are m
sured in units of the cell depthd, and time is measured in
units of the vertical diffusion timed2/k, where k is the
thermal diffusivity of the fluid. The parameterR is the Ray-
leigh number, defined to be the dimensionless tempera
differenceDT across the top and bottom plates,

R5
agd3

nk
DT, ~4!

wherea is the thermal expansion coefficient,k is the ther-
mal diffusivity, andn is the viscous diffusivity~kinematic
viscosity! of the fluid. In this paper, we will also frequentl
use the reduced Rayleigh number

e5
R2Rc

Rc
, ~5!

whereRc'1708 is the critical Rayleigh number at the ons
of convection in an infinite domain@1#. The parameters is
the Prandtl number, defined to be the ratio of the flui
thermal to viscous diffusivities,

s5
n

k
. ~6!

The material walls are no-slip so that the velocity fie
satisfies

u50 on all material walls. ~7!

The temperature field is constant on the top and bot
plates:

TS x,y,z57
1

2
,t D56

1

2
, ~8!

and we assume that the lateral walls are perfectly insulat
so that

n̂•“T50 on lateral walls, ~9!

wheren̂ is the unit vector perpendicular to the lateral walls
a given point. The pressure fieldp has no associated bound
ary condition, since it does not satisfy a dynamical equat

The influence of the lateral walls on the dynamics is d
termined by the dimensionless aspect ratioG, defined to be
the half-width-to-depth ratio of the cell if it is rectangula
and the radius-to-depth ratio if it is cylindrical.
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B. Direct numerical simulations

We used two different numerical schemes to solve
Boussinesq equations. The first is a serial second-or
accurate finite-difference scheme that is based on a c
colocated mesh. It is highly efficient for simulating a recta
gular cell of moderate aspect ratio. The second is a para
spectral element scheme that is second-order accurate in
and is able to treat more complex geometries with arbitr
lateral boundaries. Both schemes were used to obtain
results presented in this paper and were found to give g
agreement with each other. Details of both of these sche
are available elsewhere@35,36#. For applications of these
schemes to related problems in Rayleigh-Be´nard convection,
see Refs.@37–39#.

C. Mean flow

When the convection pattern is made up of rolls that
neither concentric nor straight and parallel, a mean flo
slowly varying in the horizontal coordinates, will be set u
The importance of the mean flow is that it is a nonlocal flo
mode, and as such, affects the global behavior of the con
tion pattern even though its magnitude is small. A detai
derivation of the mean flow can be found in Ref.@22#. Heu-
ristically, it can be understood as follows. When there
inhomogeneities in the amplitudeA(x,y) and wave vector
k(x,y) @or equivalently, the phasef(x,y) where“'f5k]
of the convection rolls, a Reynolds stress will be genera
locally from the gradients ofk andA. This results in a flow
slowly varying in the plane. In addition, these inhomogen
ities will also induce a varying componentps(x,y,t) in the
pressure field that is constant across the depth of the cell
slowly varying in the plane. The gradient“'ps will then
drive a global flow that, together with the Reynolds-stre
induced flow, distorts the convection rolls further. If we ca
the slowly varying flowuD , then we can write@22#

s]zzuD5“'ps1
1

2pE0

2p

dfu•“u' , ~10!

where the integral over the phase variablef serves to aver-
age out the fast modes of the integrand. The as yet unkn
field ps can be determined via the incompressibility con
tion, Eq. ~3!, which requires that

“'•E
21/2

1/2

dzuD~x,y,z,t !50. ~11!

Equation~10! can then be integrated twice with respect toz,
with boundary condition Eq.~7!, to completely giveuD .
Finally, the slow distortionsuD advect the phase contours o
the convection rolls, yielding an additional advection term
the phase equation@22#,

] tf→] tf1U•“'f. ~12!

The velocity fieldU is called the mean flow. It is an averag
of the slow distortions over the depth of the cell,
6-3
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U~x,y,t !5E
21/2

1/2

dzuD~x,y,z,t !g~z!, ~13!

with g(z) a weighting function that, in principle, can be ca
culated from the nonlinear structure of the rolls@1,7#.

We can approximate the mean flow from our numeri
simulations as the average over the depth of the cell of
slow components of the horizontal velocity,

U~x,y,t !'
1

2pE0

2p

df E
21/2

1/2

dzu'~x,y,z,t !. ~14!

In practice, we replace the integral over the phase variabf
with a Gaussian filter of characteristic widthO(1) so that
variations over short length scales are smoothed out.

For the approximation of Eq.~14!, and with the no-slip
boundaries, Eq.~7!, the mean flowU(x,y,t) is solenoidal:

“'•U50. ~15!

We will also find it convenient to use the mean-flow strea
function z(x,y,t) and the vertical component of the mea
flow vorticity, vz , defined by

2¹'
2 z5vz5 ẑ•~“'3U!. ~16!

The stream function, in particular, is useful to visualize b
cause it gives the streamlines and so the geometry of
mean flow.

D. Quenching mean flow

We now describe a procedure to construct a modified
locity field that does not have any mean flow. To do this,
want to add to the right-hand side of Eq.~10! the negative of
the source of the slow distortions, i.e., the depth averag
the Reynolds stress, so thatuD becomes zero for al
(x,y,z,t). In Appendix A, we show that this additional term
takes the form

F~x,y,t !52rE
21/2

1/2

dzu•“u' ~17!

with r'1.5 a constant. We can then addF to the fluid equa-
tion, so that Eq.~1! becomes

s21~] t1u•“ !u~x,y,z,t !52“p1¹2u1RTẑ1s21F.
~18!

If F is introduced at timet5tq , the time needed for the
modified velocity fieldu to respond to this additional forcin
can be estimated by applying dimensional arguments on
terms in Eq.~18!. This time scale isO(s). In this paper, we
consider s51 so that we expect the mean flow to b
quenched in a time scale ofO(1) from time tq .

For a pattern that does not have the mean flow, such
pattern comprising straight parallel rolls with no defects
concentric circular rolls, the quenching procedure sho
leave the convective properties, such as the Nusselt num
of the fluid unchanged. The Nusselt number is the ratio
05620
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convective heat transfer to heat transfer that would occur
conduction alone if the fluid remained at rest. In Fig. 1, w
show that this is true. The Nusselt numbers before~denoted
by solid lines! and after~dashed lines! the quenching proce
dure, which occurred att5tq550, are indeed the same.

III. RESULTS

A. Mean flow and spiral defect chaos

Using the numerical schemes described in Sec. II B,
evolved Eqs.~2!, ~3!, and~18! from the initial conditions

u~x,y,z,t50!5p~x,y,z,t50!50, ~19!

and

T~x,y,z,t50!52z1h~x,y,z!, ~20!

whereT52z is the linear conduction profile andh is ran-
domly chosen from a uniform distribution in the range
@21025,1025#. We observed spiral defect chaos when t
parameters are chosen such that the reduced Rayleigh
ber e lies in the range@0.6,3.0#, the Prandtl numbers'1,
and the aspect ratio lies in the range@16,30#. In Fig. 2~a!, we
show an example: a planform of the midplane temperat
field T(x,y,z50) at time t5500 for parameterse51.0, s
51, and Gx5Gy520. In general, the planforms we ob
served are qualitatively similar to those observed in exp
ments in both cylindrical@10# and rectangular@40# geom-
etries.

We note that the range of aspect ratios that we have si
lated is smaller than that of past experiments which exte
up toG*50 @10,12,14#. This limitation is caused by the nee
to integrate up to at least the horizontal diffusion time sca
t;G2, which is an estimate of the minimum time for therm
transients to diffuse over the entire cell and thus for the p
tern to reach an asymptotic state. Because of this quad
dependence on the aspect ratio, the time needed to exe
the numerical schemes so that an asymptotic pattern
reached becomes prohibitively long forG beyond about
20–30 ~based on current computational resources; for
tails, see Ref.@35#!.

In the rest of this section, we report on results simula
in a rectangular cell of aspect ratioGx5Gy520. We inte-
grated for 500 time units, and then, at timet5tq5500, in-
voked the forcing term given by Eq.~17! that will quench the
mean-flow dynamics. In Fig. 2~b!, we plot the midplane tem-
perature field at timet5510 which is ten time units after th
quenching of the mean flow has begun.@Recall that the
quenching takes place in a time ofO(s) so the quenched
state at ten time units should have already been asymp
for our s51 state here.# We see that the rolls have ‘‘straigh
ened out’’ in that they have lost their curvature and ha
developed angular bends. More strikingly, the straighte
roll patches become stationary, leaving the only dynamic
the pattern to come from the motion of defects such as
locations and grain boundaries. To illustrate this transit
from a dynamical state to a seemingly ‘‘frozen’’ one, we pl
in Fig. 3 the time series of the rate of change of the tempe
6-4
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MEAN FLOW AND SPIRAL DEFECT CHAOS IN . . . PHYSICAL REVIEW E67, 056206 ~2003!
ture field at several locations in the cell. We see that, fot
,tq5500, the derivativedT(x,y)/dt fluctuates and is sig
nificantly different from zero at allt,tq . However, after the
quenching of the mean flow is initiated att5tq5500, the
derivative dT(x,y)/dt relaxes to approach zero in a tim
scale ofO(1), suggesting that all dynamics is becoming fr
zen and that a stationary pattern is being approached.

We have also repeated the quenching of the mean flo
other Rayleigh numbers ranging frome50.6 to 3.0, and for
different instances of the initial condition, Eq.~20!. In all
cases, we observed similar stationary planforms as show
Fig. 2~b!. In addition, this spiral-to-angular transition can
observed in the reverse direction. When the mean-fl
quenching is turned off at a later timet5550 so that the
mean flow is again restored to the system, the angular be
develop into spirals and the stationary planform becom
dynamical again. Spiral defect chaos is fully restored@41#.
Furthermore, the stationary textures of stripes with angu
bends can also be observed when the quenching is initi
at other times. For example, instead of initiating the me
flow quenching procedure at a time when a spiral def
chaotic state is already asymptotic, we have also initiated
quenching procedure immediately at the start of the sim
tion, t5tq50, again using Eqs.~19! and~20! as initial con-
ditions. In Fig. 4~a!, we show the planform after 100 tim
units for the parameterse51.0, s51, andGx5Gy520. We
see that it comprises patches of locally straight rolls end
into each other in angular bends. There are no spirals pre
When the mean flow is restored at timet5100, we find that,
after a time ofO(1), spiral defect chaos appears, as can
seen in Fig. 4~b! which shows the planform at 500 time uni
after the mean flow has been restored.

Thus, we have shown that spiral defect chaos does
exist without the presence of the mean flow.

FIG. 3. The rate of change of the temperature fielddTi /dt vs
time t for the four locations in the cell indicated in Fig. 2~a!. Prior
to quenching of the mean flow which takes place at timet5tq

5500, the derivativedT/dt fluctuates and differs from zero. Afte
quenching, it approaches zero in a time scale ofO(1), suggesting
that the pattern is approaching stationarity.
05620
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Before we conclude this section, we qualitatively compa
the differences between the states observed when the m
flow is quenched and at high Prandtl numbers, for which
mean flow is weak.~Recall that the magnitude of the mea
flow is inversely proportional to the Prandtl number.! Start-
ing from the state shown in Fig. 2~a!, we instantaneously
increased the Prandtl number for that state froms51 to s
510 at timet5500. Although increasing the Prandtl numb
changes the convective properties of the fluid and hence
dynamics of the state, we nevertheless observed@see Fig.
5~a!# stripes with angular bends that are similar to those
served when the mean flow is quenched. Thus, the st
observed when the mean flow is quenched and unquen
states observed at high Prandtl numbers are similar. In a
tion, we also show in Fig. 5~b! the state observed when w
invoke the mean-flow quenching procedure after increas
the Prandtl number tos510. We see that it is again simila
to the pattern ats510, suggesting that even ats510, the
residual mean-flow components are negligible.

Finally, we note that, contrary to the results of Assenh

FIG. 4. ~a! Stationary patches of stripes with angular bends
time t5100 when the mean-flow quenching is introduced at ti
t50. The parameters aree51.0, s51, and Gx5Gy520. ~b!
When the quenching is turned off at timet5100 so that the mean
flow is restored, spiral defect chaos is observed. The planf
shown here is at 500 time units after the restoration of the m
flow.

FIG. 5. ~a! The pattern observed when the Prandtl number
instantaneously increased froms51 to s510 comprises stripes
with angular bends that are similar to the quenched patterns in
2~a!. The pattern shown here is at 100 time units after the Pra
number has been instantaneously increased. The parameters
spond to those of the state in Fig. 2.~b! When the mean flow is
quenched for thes510 state of~a!, we see that the resulting patter
is qualitatively unchanged. Shown here is the state at 100 time u
after the mean flow has been quenched.
6-5
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CHIAM et al. PHYSICAL REVIEW E 67, 056206 ~2003!
imer and Steinberg@20,21#, we do not observe the transitio
from spirals to targets as the Prandtl number is increase
s510. Several explanations are plausible: First, in the
senheimer and Steinberg experiments, non-Boussinesq
fects are significant@20,21#, whereas our direct numerica
simulations are only for Boussinesq fluids. Second,
smaller aspect ratios may not support the formation of
gets, and that we would indeed see the spiral to target t
sition in larger aspect ratios. Third, the transition to targ
may be strongly dependent on the history of the system
particular, on the path~in system space! that the parameter
traverse.

B. Mean flow and prechaotic stripe textures

At lower Rayleigh numbers near the convective thresho
the planforms observed take the form of stripe textures ra
than exhibiting spiral defect chaos. They comprise patche
locally parallel rolls and arcs such that each patch termin
at the boundaries of another at a different orientation, and
boundaries between the patches are usually populated b
fects. In general, the stripe textures are stationary after t
sients, except for the motion of defects at the grain bou
aries. In Fig. 6~a!, we show a planform of the midplan
temperature field at timet5500 ate50.15 ands51 in a
rectangular cell of aspect ratioGx5Gy520 .

When the mean flow is quenched at timet5tq5500, we
observe that the stationary stripe textures remain station
and that those rolls that are curved are straightened out.
resulting pattern, shown in Fig. 6~b! which is at ten time
units after the quenching, comprises patches of angular s
tures that replaced patches of curved arcs.

C. Nusselt numbers

One way to quantify the changes introduced by
quenching procedure to a pattern is to look at its global c
vective properties, such as the Nusselt number. For a pa
with the mean flow, the Nusselt number will be differe
from those of the unmodified velocity field of Eq.~18! be-
cause the latter is not a solution to the Boussinesq equat
An alternate way of saying this is that Eq.~18!, together with

FIG. 6. ~a! Midplane temperature field at timet5500 for pa-
rameterse50.15, s51, andGx5Gy520. The stripe texture com
prises patches of locally parallel rolls and arcs that are station
~b! The state of~a! observed at ten time units after the mean flow
quenched. The curved rolls have transitioned into stripes with
gular bends that are stationary.
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Eqs.~2! and~3!, can be interpreted as the driven Boussine
equations with a driving forces21F that is turned on at time
tq . Owing to this driving, we expect the convective prope
ties of the fluid to be stronger at timet.tq than at timet
,tq . This is illustrated in Fig. 7. The fractional change
the Nusselt numberDN/N caused by the introduction of th
quenching of the mean flow increases with the reduced R
leigh number. A best linear fit to the data yields the relati

DN/N5~0.05260.005!e. ~21!

Thus, for example, whene;1, modifying the velocity field
to quench the mean flow introduces a change'5% to the
averaged convective properties of the fluid.

D. Wave number distributions

In this section, we quantify the differences between
patterns observed with the mean flow and with the me
flow quenched by studying the wave number distributio
We compute the probability density function of wave num
bers,P(k), from a time average of the patterns. We used
local method discussed in Ref.@15# to calculate the wave
number distributions. We have found that, for smaller asp
ratiosG&20, this method produces better statistics than g
bal Fourier transform methods that were used in previ
experiments@10,12,14#. The mean of the wave number dis
tribution then gives the mean wave number^k&(e) as a func-
tion of the reduced Rayleigh numbere.

Before we highlight the differences, we point out that t
mean wave numbers obtained from our numerical simu
tions of spiral defect chaos lie within the Busse stabil
balloon @1,42#. In addition, they are also consistent with e
isting theory for the selection of wave numbers in spiral d
fect chaos@18,19#, which suggests that the wave numbers
convecting spirals are ‘‘frustrated,’’ i.e., they lie between tw
competing selection mechanisms, selection by focus-t

ry.

n-

FIG. 7. Time series of the Nusselt numberN(e,t) for stripe
textures and spiral defect chaos at several values ofe before~de-
noted by solid lines! and after~dotted lines! quenching of the mean
flow which occurred at timetq5500. All data reported here are fo
the Prandtl numbers51 and a rectangular cell of aspect ratioGx

5Gy520.
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MEAN FLOW AND SPIRAL DEFECT CHAOS IN . . . PHYSICAL REVIEW E67, 056206 ~2003!
singularities @43# and selection by dislocations@44,45#.
These two sets of selected wave numbers, ats51, are de-
noted in Fig. 8 by the dashed and the dotted lines, res
tively. We see that our direct numerical simulations produc
wave numbers~denoted by the circles! that lie within these
two sets of selected wave numbers. For comparison
poses, we have also included the mean wave numbers c
lated in a previous experiment@10,14# performed in a cylin-
drical cell withG578 ands50.95~diamonds!. We see that,
at lower Rayleigh numbers, the mean wave numbers fr
our simulations agree with the experimental findings. Ho
ever, at higher Rayleigh numbers, the wave numbers f
our simulations are smaller than those of the experime
Presumably, the smaller aspect ratios used in our simulat
mean that our wave numbers are affected by finite size
fects.

For the range 0.6<e<1.2, the mean wave numbers of th
stripes with angular bends when the mean flow is quenc
~denoted by the crosses in Fig. 8! appear to fall onto a
straight line whose mathematical form can be obtained fr
a linear fit,

^k&5~3.1460.05!2~0.1660.06!e. ~22!

This relation is consistent with the wave numbers selected
focus-type singularities at Prandtl numbers51 @43#,

kf53.11720.13e. ~23!

FIG. 8. Mean wave numberŝk& for various reduced Rayleigh
numberse. The circles denote wave numbers estimated for sp
defect chaotic states ats51 andGx5Gy520 from our direct nu-
merical simulations averaged over different random initial con
tions. The crosses denote wave numbers for states observed
time units after the mean flow is quenched. For comparison
poses, the diamonds denote wave numbers obtained in the ex
ment of Ref. @10# in a cylindrical cell of G578,s50.95. The
dashed line denotes the unique wave numberkf possessed by focus
selected convection ats51, and is represented by Eq.~23!. The
dotted line denotes the unique wave numberkd selected by dislo-
cations.
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The local pattern in focus-selected convection includes r
that form closed contours about a point within the cell. In o
rectangular geometries, the four corners act as focus cen
as can be seen by the presence of approximately axisym
ric roll patches emanating from the corners, see Fig. 2~a!. In
the absence of the mean flow, the wave number sele
therefore appears to be dominated by that selected by
focus centers~i.e., the corners! to give a mean wave numbe
consistent with that selected in focus-type singularities.

Furthermore, in the absence of the mean flow, the w
numberskf lie at the boundary of the zigzag instability@22#.
The patterns observed with the mean flow quenched are
dominated by lateral ‘‘zig and zag’’ bendings, leading to t
stripes with angular bends observed in Figs. 2~b! and 6~b!.

We have also computed the correlation lengthj(e) of the
patterns as a function ofe. The correlation length, define
here as the inverse of the standard deviation of the proba
ity density functionP(k), is a measure of the average leng
scale of correlated regions in the pattern. In Fig. 9, we sh
j(e) calculated for both unquenched patterns~denoted by the
circles in Fig. 9! and for patterns observed when the me
flow is quenched~crosses!. For comparison purposes, w
have also included the correlation lengths calculated from
previous experiment@10,14# performed in a cylindrical cell
with G578 ands50.95 ~diamonds!. We see that the corre
lation lengths for the states when the mean flow is quenc
are, on the average, about twice as large as those for s
defect chaos at all values ofe. In addition, the correlation
lengths for the unquenched patterns can be fitted with
power lawj}e21/2, as has been suggested by past exp
ments@12,14#, and which is predicted by dimensional arg
ments to be valid at least near threshold. However, the s
cannot be said for the quenched states. In fact, the data
gest that while an exponent of21/2 might be fitted fore
*0.7, the correlation lengths appear to have saturatedj
;G514 for e&0.7. This suggests that finite size effects b
come important, and that, in order to obtain a better estim
of the scaling relation for the patterns observed when

l

-
ten
r-
eri-

FIG. 9. Correlation lengthj vs the reduced Rayleigh numbere.
The symbols are as defined in Fig. 8. The dashed line corresp
to the power lawj}e21/2.
6-7



p
th
e

an
he
o
to

a
re

la

ur

te

e

th
e

t

an

l
nse-
the

at
de-

es.

tly
olls
in
ra-

om-
n a
cts

m-

al
n

ary.
n-
is

n-
es
flo

nd
lar
een

CHIAM et al. PHYSICAL REVIEW E 67, 056206 ~2003!
mean flow is quenched, we would need to use a larger as
ratio. Owing to the lack of data over more decades of
reduced Rayleigh numbers, actual fittings to the data w
not carried out.

E. Curvature distributions

Finally, we quantify how much the quenching of the me
flow straightens the rolls by looking at the distribution of t
local curvaturex, defined at every point in the planform t
be the magnitude of the divergence of the unit wave vec

x5u“• k̂u. ~24!

A value of x50 corresponds to a straight roll, whereas
value ofx51 corresponds to a roll with a radius of curvatu
of unity.

We have computed the probability density functionP(x)
for spiral defect chaos observed ate51.0, s51, and Gx
5Gy520, as well as for the resulting stripes with angu
bends observed at ten time units after the mean flow
quenched. In Fig. 10, we plot the two distributions. The c
vature distribution for spiral defect chaos~solid line! peaks at
a value ofx'0.1, suggesting that the pattern is domina
by spirals whose radius of curvature isx21;10, consistent
visually with the pattern shown in Fig. 2~a!. We see that this
peak broadens to become a plateau at 0&x&0.1 for the
quenched state~dashed line!, suggesting an increase in th
dominance of straighter rolls in the pattern.

We observed similar results for the comparison of
curvature distribution for the stripe textures. In Fig. 11, w
show the comparisons for a state ate50.15. We see tha
both distributions, with~solid line! and without~dashed line!
the mean flow, decrease approximately monotonically

FIG. 10. The probability density functionP(x) of the curvature
x. The solid line is for the spiral defect chaotic state ate51.0,
s51, andGx5Gy520 averaged over different random initial co
ditions and timest5400–500. The dashed line is for the strip
with angular bends observed at ten time units after the mean
has been quenched.
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rapidly with increasingx. Both the comparisons for spira
defect chaos and for stripe textures suggest that the co
quence of quenching the mean flow is to straighten out
rolls.

In addition, the distribution ate50.15 for the quenched
case is higher forx&0.05 as well as for 0.1&x&0.4 ~see the
inset of Fig. 11!, and lower otherwise. This suggests th
another consequence of quenching the mean flow is the
velopment of angular structures that have large curvatur

F. Mean flow and lateral boundaries

In experiments where the Rayleigh number is sufficien
high, it has been frequently observed that convection r
terminate perpendicularly into the lateral walls. We show
this section that the mean flow generated by amplitude g
dients near lateral walls can be used to explain this phen
enon, although the applicability of this argument rests o
number of factors, among them the presence of defe
which affects the ability of the patterns to reorient the
selves.

If we call n̂ the outward unit vector normal to the later
boundary andk̂ the wave director of the rolls, then we ca
define the wall-roll obliqueness angle as

Q[arccosuk̂•n̂u. ~25!

In practice, the numerical value ofQ at a particular location
along the lateral boundary is obtained by averaging Eq.~25!
over a lengthr 50.5 to r 51.5, wherer is the perpendicular
distance away from that location along the lateral bound
The valueQ5p/2 corresponds to rolls terminating perpe
dicularly into the walls. The common occurrence of th

w

FIG. 11. The probability density functionP(x) of the curvature
x. The solid line is for stripe textures ate50.15, s51, andGx

5Gy520 averaged over different random initial conditions a
times t5400–500. The dashed line is for the stripes with angu
bends observed at 10 times units after the mean flow has b
quenched. BecauseP(x)'0 for x*0.5, the region 0.5&x&1 is
not plotted. The inset shows the region 0.1<x<0.4 enlarged.
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MEAN FLOW AND SPIRAL DEFECT CHAOS IN . . . PHYSICAL REVIEW E67, 056206 ~2003!
value remains a phenomenological observation, with
much theoretical understanding, although it has been fo
@46# thatQ is not fixed by the physical boundary condition
Eqs.~7!–~9!.

However, when rolls do not terminate perpendicularly a
lateral boundary, variations in the amplitude of the conv
tion rolls as it decays near the lateral boundaries result in
generation of a mean flow.@Recall from Eq.~10! that a mean
flow is generated by inhomogeneities in the wave numb
and amplitudes of the convection rolls.# The normal compo-
nent~with respect to the lateral boundary! of this mean flow
is canceled by the flow generated from slow pressure gr
ents, resulting in the mean flow being parallel to the late
boundary. It then tends to push the rolls back to a perp
dicular orientation. The actual calculations are worked ou
Appendix B. The importance of this mean flow in ensuri
that the rolls terminate perpendicularly is indicated by o
serving that, in the absence of the mean flow, oblique r
are more prevalent. In Fig. 12, we plot the wall-roll obliqu
ness angle averaged over the lateral boundaries for pat
observed att5500 at various reduced Rayleigh numbere,
Prandtl numbers51, and in a rectangular cell of aspe
ratio Gx5Gy520, with the mean flow and with the mea
flow quenched. We see that, with the mean flow, the rolls
close to perpendicular,Q'p/2. However, when the mea
flow is quenched, the rolls are more oblique,Q&p/2. In
fact, the difference in the mean wall-roll obliqueness an
between the states with the mean flow and with the m
flow quenched,D^Q&, increases approximately linearl
with e,

D^Q&5~0.1660.01!e, ~26!

as the inset of Fig. 12 depicts.
When the mean flow is quenched, the reorientation of

rolls away fromQ5p/2 is almost instantaneous. We illus

FIG. 12. The mean wall-roll obliqueness angle^Q& as a func-
tion of the reduced Rayleigh numbere for states with the mean flow
~circles! and with the mean flow quenched~crosses!. The inset
shows the difference between the two sets of data,D^Q&, as a
function of e.
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trate this result in Fig. 13 for one particular reduced Rayle
numbere51.0. In this case, the mean-flow quenching tak
place at timet5tq5500. We see that, at timet5500, the
mean wall-roll obliqueness angle moves away fromQ
5p/2 in a time scale ofO(1).

The above argument that the mean flow restores the r
to a perpendicular orientation may not always be applica
For example, when we performed simulations in a cylind
cal cell of aspect ratioG530, we find that, ate51.0, the
mean wall-roll obliqueness angle^Q& still remains close to
p/2 when the mean flow is quenched. This can be seen m
clearly in Fig. 14, where we show the probability dens
P(Q) of wall-roll obliqueness angles along the later
boundaries for states observed in a rectangular cell of as
ratio Gx5Gy520 and cylindrical cell of aspect ratioG
530. We see that in a cylindrical cell with the mean flo
quenched, the peak atQ'p/2 is still observed after the
mean flow has been quenched. One possible explana
might be that, in a cylindrical cell, there are more defe
existing near the lateral boundaries and that these def
then pin the rolls, preventing them from reorienting aw
from Q5p/2 when the mean flow is quenched.

Another instance where the above argument does not
ply is at low Rayleigh numbers. From Eq.~B7! in Appendix
B, the magnitude of the mean flowuUu}e1/2 so that at low
Rayleigh numbers, the mean flow may not be strong eno
to reorient the rolls perpendicularly. This is evident in F
6~a!, where, at the reduced Rayleigh numbere50.15, rolls
are seen to terminate with an acute angle at the lateral w
In this case, the presence of a restoring mean flow can
be visualized. The mean-flow vorticity plot corresponding
this pattern, shown in Fig. 15~a!, shows the presence o
strong vorticity along the bottom half of the left wall and th

FIG. 13. The change in the mean wall-roll obliqueness an
^Q& as a function of time, averaged over different random init
conditions. The parameters here aree51.0, s51, and Gx5Gy

520. The mean-flow quenching takes place at timet5tq5500, so
that, for 490<t<500, the mean wall-roll obliqueness angle is for
pattern whose bulk dynamics exhibits spiral defect chaos, whe
for 500<t<510, the bulk dynamics is made up of stripes wi
angular bends.
6-9
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CHIAM et al. PHYSICAL REVIEW E 67, 056206 ~2003!
top half of the right wall. There, the restoring mean-flo
vorticity takes the form of long and narrow circulating ‘‘jets
that are about one roll size wide and several roll sizes lo
In Fig. 15~b!, the vorticity is plotted as a function of distanc
away from the lateral wall along the solid and dashed h
zontal lines shown in Fig. 15~a!. The existence of a positive
vorticity patch close to the wall and a negative patch furt
away from the wall, which together indicate the presence
a restoring mean flow, agrees qualitatively with the theor
cal results of Fig. 18 in Appendix B. When the Rayleig

FIG. 14. ~a! Distribution of angles where rolls terminate at
lateral boundary in a rectangular cell of aspect ratioGx5Gy520.
The solid line shows the distribution for the spiral defect chao
state averaged over different initial conditions ate51.0 and s
51. The dashed line shows the distribution for the state with
mean flow quenched.~b! The solid line shows the distribution fo
spiral defect chaos observed in a cylindrical cell of aspect ratiG
530 ate51.0 ands51. The dashed line shows the distribution f
this state but with the mean flow quenched.

FIG. 15. ~a! The mean-flow vorticityvz(x,y) corresponding to
the stripe texture of Fig. 6~a! obtained using Eq.~16!. Light regions
correspond to positive vorticity, dark regions to negative vortic
The important feature in this vorticity map is the presence of ‘‘je
like structures along the bottom half of the left wall and the top h
of the right wall.~b! The vorticity vz(x) is plotted along the solid
and the dashed horizontal lines shown in~a!. The shape ofvz(x) is
to be compared with Fig. 18 in Appendix B, where a positive an
negative vorticity patch sets up a restoring mean flow.
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number of the state in Fig. 6 is increased frome50.15 to
e51.0, the mean flow becomes strong enough to reorient
rolls to become perpendicular to the lateral walls, and s
sequently disappears.

IV. CONCLUSION

In this paper, we have described a procedure to const
a modified velocity field that does not have any mean flow
a convecting flow. We have applied this procedure to sh
that spiral defect chaos does not survive when the mean
is quenched. Instead, a pattern characterized by texture
stripes with angular bends appears. We have also shown
the mean wave numbers of these quenched patterns app
those selected by focus-type singularities, which, in the
sence of the mean flow, lie at the boundary of the zigz
instability.

We next presented a heuristic argument on how the m
flow can contribute to rolls terminating into a lateral boun
ary perpendicularly. We provided data to show that, in
absence of the mean flow, the rolls begin to deviate from
perpendicular orientation, and this obliqueness increa
with the Rayleigh number. However, the ability of this me
flow to restore the rolls to a perpendicular orientation may
impeded by the presence of defects that do not allow the r
to reorient themselves, and at low Rayleigh numbers wh
the restoring mean flow is weak.
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FIG. 16. The maximum mean-flow magnitude vs various tr
values ofr. The mean-flow magnitudes are normalized by th
values atr50, i.e., when there is no quenching. We see that, wh
r'1.5, the mean flow goes to zero, for all three Prandtl numbec
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APPENDIX A: DERIVATION OF QUENCHING
OF THE MEAN FLOW

In this appendix, we derive the functional form of th
forcing termF that is to be added to the fluid equation, E
~1!, to make the resulting fluid dynamics have zero me
flow.

As mentioned in Sec. II C, the mean flow comprises
local component generated by the Reynolds str
1/(2p)*0

2pdfu•“'u' and a global component driven by
slow horizontal pressure gradient that is present in orde
guarantee the incompressibility condition, Eq.~3!. Thus, if
the Reynolds stress is subtracted from the dynamics a
times, then the mean flow will not be generated. We th
suggest that

F~x,y,t !5
1

2pE0

2p

df rE
21/2

1/2

dzu•“'u' , ~A1!

where the operatorr*21/2
1/2 dz serves as an average over t

depth of the cell. ThisF can then be subtracted from th
fluid equation, Eq.~1!, resulting in Eq.~18!.

We now need to evaluate the value of the constantr. To
do this, we rewrite the equation for the slow distortions, E
~10!, as

s]zzuD5“'ps1
1

2pE0

2p

dfu•“u'2F. ~A2!

Following Ref.@22#, the Reynolds stress term near thresh
takes the form

1

2pE0

2p

dfu•“u'[I ~k,z!R~x,y!, ~A3!

where

R~x,y![k“'•~kA2!, ~A4!

and

FIG. 17. Straight and parallel convection rolls with wave dire

tor k̂ terminating at a lateral boundary with outward normaln̂ at an
angle of obliquenessQ. Note that, by our definition, 0,Q,p/2.
The perpendicular distance away from the lateral wall isx.
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I ~k,z![w0~k,z!]z

]f0~k,z!

]kc
2

2
]w0~k,z!

]kc
2

]zf0~k,z!,

~A5!

with w0(k,z) andf(k,z) the vertical profiles of the vertica
velocity and the potential of the horizontal velocities, resp
tively. For systems satisfying the rigid boundary conditio
Eq. ~7!, these functions are the familiar Chandrasekhar fu
tions @47#.

We can then rewrite Eq.~A2! as

s]zzuD5“'ps1I ~k,z!R~x,y!2rE
21/2

1/2

dzI~k,z!R~x,y!.

~A6!

Integrating Eq.~A6! with respect toz twice, and making use
of the boundary condition, Eq.~7!,

suD5p~z!“'ps1J~k,z!R~x,y!

2p~z!rE
21/2

1/2

dzI~k,z!R~x,y!, ~A7!

with

p~z![
1

2 S z22
1

4D ~A8!

the Poiseuille profile, andJ(k,z) the double integral of
I (k,z) with respect toz. Employing the incompressibility
condition, Eq.~11!, we then arrive at the equality

-

FIG. 18. ~a! The functionf (Q,x) defined in Eq.~B5! which is
the normalized vertical component of the mean-flow vorticity. It
plotted here for several values ofQ and vsx/j. ~b! The function
f (Q,x) defined in Eq.~B8! which is the normalized mean-flow
magnitude. It is plotted here for several values ofQ and vsx/j.
6-11



a

ut

f
g,
flo
e

u
-

a

t
h

F

th

gt

n

an

he
e
a
r

.
s

be

all
ra-

the

of

de

u-

q.

CHIAM et al. PHYSICAL REVIEW E 67, 056206 ~2003!
r5

12E
21/2

1/2

dzJ~k,z!

E
21/2

1/2

dzI~k,z!

. ~A9!

Evaluating these integrals numerically yieldsr'1.5 for the
rigid boundary condition, Eq.~7!. Moreover,r is relatively
independent of the wave numberk, varying from r
51.4886 atk52.8 to r51.4887 atk5kc53.117 and tor
51.4886 atk53.4, suggesting the validity of treating it as
constant.

Finally, to numerically confirm this result, we carry o
the quenching of the mean flow, as described in Eq.~18!, for
a range of values forr, at e51.0 in a rectangular cell o
Gx5Gy520. At ten time units after affecting the quenchin
we then measure the maximum magnitude of the mean
as a function ofr. We plot our results in Fig. 16, where w
show the maximum mean-flow magnitude~normalized by
the maximum mean-flow magnitude observed witho
quenching! vs r for data from three different Prandtl num
bers. We see that, whenr'1.5, the normalized maximum
mean-flow magnitude is indeed zero.

APPENDIX B: RESTORING THE MEAN FLOW NEAR
A LATERAL BOUNDARY

In this appendix, we show that a set of straight and p
allel rolls that are oriented obliquely at an angleQ to a
lateral boundary sets up a mean flow that tends to restore
rolls back to being perpendicular to the lateral boundary. T
various quantities used here are defined in the sketch in
17.

We will make the assumption that the wave vectors of
rolls are constant near the lateral boundary,

k5~2k cosQ,2k sinQ!, ~B1!

and that the convection amplitude within a correlation len
j of a lateral boundary is suppressed@1,48#:

A~x,y!5A0 tanhS x

j cosQ D . ~B2!

The quantityA0 is the amplitude in the bulk. The correlatio
length j5A2e21/2j0 with j050.385. The variablex is the
perpendicular distance away from the lateral boundary.

Then, from the Cross-Newell equation@22#, the amplitude
gradients near the lateral wall will result in a non zero me
flow vorticity v given by

v5g ẑ•“'3@k“'•~kA2!#, ~B3!

where g is a constant that is inversely proportional to t
Prandtl numbers. ~If we relax the assumption that the wav
numbers of the rolls are constant, then the compression
dilation of the rolls as well as inhomogeneities in their cu
vatures will also contribute to the mean flow.! Substituting
Eqs.~B1! and ~B2! into Eq. ~B3! then gives
05620
w

t

r-

he
e
ig.

e

h

-

nd
-

v~x!52gA0
2k2j22f ~Q,x!, ~B4!

where the normalized mean-flow vorticity

f ~Q,x!5tan~Q!sech2S x

j cosQ D F123 tanh2S x

j cosQ D G ,
~B5!

is plotted in Fig. 18~a! for several representative values ofQ.
We see thatv is positive forx/j&1, and negative otherwise
The currents from this vorticity pair will then drive the roll
back to a perpendicular orientation.

The mean flow generated by this vorticity can also
easily computed. Along the lateral wall, it is given by

uUu5gukyu“'•~kA2!. ~B6!

~The component of the mean flow normal to the lateral w
is canceled by the flow coming from the slow pressure g
dient.! Using Eqs.~B1! and ~B2!, we arrive at

uUu52gA0
2k2j21g~Q,x!, ~B7!

where the normalized restoring mean-flow magnitude in
direction of the lateral wall,

g~Q,x!5sin~Q!sech2S x

j cosQ D tanhS x

j cosQ D , ~B8!

is plotted in Fig. 18~b! for several representative values
Q.

Finally, we plot the quantity maxuUu as a function ofQ in
Fig. 19. We see that the restoring mean-flow magnitu
grows monotonically from zero atQ50 ~corresponding to
sets of rolls parallel to the lateral wall! to attain its largest
value atQ→p/2 ~corresponding to sets of rolls perpendic
lar to the wall!. Our analysis actually breaks down foruQ
2p/2u&e1/4 because modifications at the next order in E
~B2! become important@46#.

FIG. 19. The maximum magnitude of the mean flowU as a
function of the wall-roll obliqueness angleQ. It increases mono-
tonically from zero atQ50 ~rolls parallel to the wall!.
6-12
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